Cleanup, implementing 2i

This commit is contained in:
Ugljesa Jovanovic 2020-05-16 16:39:14 +02:00 committed by Ugljesa Jovanovic
parent 6f51a0ec66
commit 6af623eef6
No known key found for this signature in database
GPG Key ID: 178E6DFCECCB0E0F
4 changed files with 555 additions and 4 deletions

View File

@ -35,7 +35,7 @@ import com.ionspin.kotlin.crypto.util.*
*/
@ExperimentalStdlibApi
@ExperimentalUnsignedTypes
class Argon2 internal constructor(
class Argon2Template internal constructor(
val password: Array<UByte>,
val salt: Array<UByte>,
val parallelism: UInt,

View File

@ -0,0 +1,326 @@
/*
* Copyright 2019 Ugljesa Jovanovic
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
@file:Suppress("EXPERIMENTAL_API_USAGE", "EXPERIMENTAL_UNSIGNED_LITERALS")
package com.ionspin.kotlin.crypto.keyderivation.argon2
import com.ionspin.kotlin.bignum.integer.toBigInteger
import com.ionspin.kotlin.crypto.hash.blake2b.Blake2b
import com.ionspin.kotlin.crypto.keyderivation.argon2.Argon2Utils.argonBlake2bArbitraryLenghtHash
import com.ionspin.kotlin.crypto.keyderivation.argon2.Argon2Utils.compressionFunctionG
import com.ionspin.kotlin.crypto.util.fromLittleEndianArrayToUInt
import com.ionspin.kotlin.crypto.util.hexColumsPrint
import com.ionspin.kotlin.crypto.util.toLittleEndianUByteArray
/**
* Created by Ugljesa Jovanovic
* ugljesa.jovanovic@ionspin.com
* on 16-May-2020
*/
enum class ArgonType(val typeId: Int) {
Argon2d(0), Argon2i(1), Argon2id(2)
}
data class SegmentPosition(
val iteration: Int,
val lane: Int,
val slice: Int
)
class Argon2(
val password: Array<UByte>,
val salt: Array<UByte> = emptyArray(),
val parallelism: Int = 1,
val tagLength: UInt = 64U,
requestedMemorySize: UInt = 0U,
val numberOfIterations: UInt = 1U,
val key: Array<UByte> = emptyArray(),
val associatedData: Array<UByte> = emptyArray(),
val argonType: ArgonType = ArgonType.Argon2id
) {
//We support only the latest version
val versionNumber: UInt = 0x13U
//Use either requested memory size, or default, or throw exception if the requested amount is less than 8*parallelism
val memorySize = if (requestedMemorySize == 0U) {
((8 * parallelism) * 2).toUInt()
} else {
if (requestedMemorySize < (8 * parallelism).toUInt()) {
throw RuntimeException("Requested memory size must be larger than 8 * parallelism. Requested size: $requestedMemorySize")
}
requestedMemorySize
}
val blockCount = (memorySize / (4U * parallelism.toUInt())) * (4U * parallelism.toUInt())
val columnCount = (blockCount / parallelism.toUInt()).toInt()
val segmentLength = columnCount / 4
val useIndependentAddressing = argonType == ArgonType.Argon2id || argonType == ArgonType.Argon2i
// State
val matrix = Array(parallelism) {
Array(columnCount) {
Array<UByte>(1024) { 0U }
}
}
private fun clearMatrix() {
matrix.forEachIndexed { laneIndex, lane ->
lane.forEachIndexed { columnIndex, block ->
block.forEachIndexed { byteIndex, byte ->
matrix[laneIndex][columnIndex][byteIndex] = 0U
}
}
}
}
private fun populateAddressBlock(
iteration: Int,
slice: Int,
lane: Int,
addressBlock: Array<UByte>,
addressCounter: ULong
): Array<UByte> {
//Calculate first pass
val firstPass = compressionFunctionG(
Array<UByte>(1024) { 0U },
iteration.toULong().toLittleEndianUByteArray() +
lane.toULong().toLittleEndianUByteArray() +
slice.toULong().toLittleEndianUByteArray() +
blockCount.toULong().toLittleEndianUByteArray() +
numberOfIterations.toULong().toLittleEndianUByteArray() +
argonType.typeId.toULong().toLittleEndianUByteArray() +
addressCounter.toLittleEndianUByteArray() +
Array<UByte>(968) { 0U },
addressBlock,
false
)
//Calculate second pass
val secondPass = compressionFunctionG(
firstPass,
addressBlock,
addressBlock,
false
)
// Put into address block
return secondPass
}
private fun computeReferenceBlockIndexes(iteration: Int, slice: Int, lane: Int, column: Int, addressBlock: Array<UByte>?): Pair<Int, Int> {
val (j1, j2) = when (argonType) {
ArgonType.Argon2d -> {
val previousBlock = if (column == 0) {
matrix[lane][columnCount - 1] //Get last block in the SAME lane
} else {
matrix[lane][column - 1]
}
val first32Bit = previousBlock.sliceArray(0 until 4).fromLittleEndianArrayToUInt()
val second32Bit = previousBlock.sliceArray(4 until 8).fromLittleEndianArrayToUInt()
Pair(first32Bit, second32Bit)
}
ArgonType.Argon2i -> {
val selectedAddressBlock = addressBlock!!.sliceArray((column * 8) until (column * 8) + 8)
val first32Bit = selectedAddressBlock.sliceArray(0 until 4).fromLittleEndianArrayToUInt()
val second32Bit = selectedAddressBlock.sliceArray(4 until 8).fromLittleEndianArrayToUInt()
Pair(first32Bit, second32Bit)
}
ArgonType.Argon2id -> TODO()
}
//If this is first iteration and first slice, block is taken from the current lane
val l = if (iteration == 0 && slice == 0) {
lane
} else {
(j2.toBigInteger() % parallelism).intValue()
}
val segmentIndex = (column % (columnCount / 4))
val referenceAreaSize = if (iteration == 0) {
if (slice == 0) {
//All indices except the previous
segmentIndex - 1
} else {
if (lane == l) {
//Same lane
column - 1
} else {
slice * (columnCount / 4) + if (segmentIndex == 0) { // Check if column is first block of the SEGMENT
-1
} else {
0
}
}
}
} else {
if (lane == l) {
columnCount - (columnCount / 4) + (segmentIndex - 1)
} else {
columnCount - (columnCount / 4) + if (segmentIndex == 0) {
-1
} else {
0
}
}
}
val x = (j1.toULong() * j1) shr 32
val y = (referenceAreaSize.toULong() * x) shr 32
val z = referenceAreaSize.toULong() - 1U - y
val startPosition = if (iteration == 0) {
0
} else {
if (slice == 3) {
0
} else {
(slice + 1) * segmentLength
}
}
val absolutePosition = (startPosition + z.toInt()) % columnCount
return Pair(l, absolutePosition)
}
fun derive(): Array<UByte> {
val h0 = Blake2b.digest(
parallelism.toUInt()
.toLittleEndianUByteArray() + tagLength.toLittleEndianUByteArray() + memorySize.toLittleEndianUByteArray() +
numberOfIterations.toLittleEndianUByteArray() + versionNumber.toLittleEndianUByteArray() + argonType.typeId.toUInt()
.toLittleEndianUByteArray() +
password.size.toUInt().toLittleEndianUByteArray() + password +
salt.size.toUInt().toLittleEndianUByteArray() + salt +
key.size.toUInt().toLittleEndianUByteArray() + key +
associatedData.size.toUInt().toLittleEndianUByteArray() + associatedData
)
//Compute B[i][0]
for (i in 0 until parallelism.toInt()) {
matrix[i][0] =
argonBlake2bArbitraryLenghtHash(
h0 + 0.toUInt().toLittleEndianUByteArray() + i.toUInt().toLittleEndianUByteArray(),
1024U
)
}
//Compute B[i][1]
for (i in 0 until parallelism.toInt()) {
matrix[i][1] =
argonBlake2bArbitraryLenghtHash(
h0 + 1.toUInt().toLittleEndianUByteArray() + i.toUInt().toLittleEndianUByteArray(),
1024U
)
}
executeArgonWithSingleThread()
val result = matrix.foldIndexed(emptyArray<UByte>()) { lane, acc, laneArray ->
if (acc.size == 0) {
acc + laneArray[columnCount - 1] // add last element in first lane to the accumulator
} else {
// For each element in our accumulator, xor it with an appropriate element from the last column in current lane (from 1 to `parallelism`)
acc.mapIndexed { index, it -> it xor laneArray[columnCount - 1][index] }
.toTypedArray()
}
}
//Hash the xored last blocks
println("Tag:")
val hash = argonBlake2bArbitraryLenghtHash(result, tagLength)
return hash
}
fun executeArgonWithSingleThread() {
for (iteration in 0 until numberOfIterations.toInt()) {
for (slice in 0 until 4) {
for (lane in 0 until parallelism.toInt()) {
println("Processing segment I: $iteration, S: $slice, L: $lane")
val segmentPosition = SegmentPosition(iteration, lane, slice)
processSegment(segmentPosition)
}
}
//Debug prints
println("Done with $iteration")
matrix[0][0].slice(0..7).toTypedArray().hexColumsPrint(8)
matrix[parallelism.toInt() - 1][columnCount - 1].slice(
1016..1023
).toTypedArray().hexColumsPrint(8)
}
}
fun processSegment(segmentPosition: SegmentPosition) {
val iteration = segmentPosition.iteration
val slice = segmentPosition.slice
val lane = segmentPosition.lane
var addressBlock : Array<UByte>? = null
var addressCounter = 1UL //Starts from 1 in each segment as defined by the spec
//Generate initial segment address block
if (useIndependentAddressing) {
addressBlock = Array<UByte>(1024) {
0U
}
addressBlock = populateAddressBlock(iteration, slice, lane, addressBlock, addressCounter)
addressCounter++
addressBlock.hexColumsPrint(16)
}
val startColumn = if (iteration == 0 && slice == 0) {
2
} else {
slice * segmentLength
}
for (column in startColumn until (slice + 1) * segmentLength) {
//Each address block contains 128 addresses, and we use one per iteration,
//so once we do 128 iterations we need to calculate a new address block
if (useIndependentAddressing && column % 128 == 0) {
addressBlock = populateAddressBlock(iteration, slice, lane, addressBlock!!, addressCounter)
addressCounter++
}
val previousColumn = if (column == 0) {
columnCount - 1
} else {
column - 1
}
val (l, z) = computeReferenceBlockIndexes(
iteration,
slice,
lane,
column,
addressBlock
)
println("Calling compress for I: $iteration S: $slice Lane: $lane Column: $column with l: $l z: $z")
matrix[lane][column] =
compressionFunctionG(
matrix[lane][previousColumn],
matrix[l][z],
matrix[lane][column],
true
)
}
}
}

View File

@ -0,0 +1,139 @@
/*
* Copyright 2019 Ugljesa Jovanovic
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
@file:Suppress("EXPERIMENTAL_API_USAGE", "EXPERIMENTAL_UNSIGNED_LITERALS")
package com.ionspin.kotlin.crypto.keyderivation.argon2
import com.ionspin.kotlin.crypto.hash.blake2b.Blake2b
import com.ionspin.kotlin.crypto.keyderivation.Argon2Template
import com.ionspin.kotlin.crypto.util.*
/**
* Created by Ugljesa Jovanovic
* ugljesa.jovanovic@ionspin.com
* on 16-May-2020
*/
object Argon2Utils {
const val R1 = 32
const val R2 = 24
const val R3 = 16
const val R4 = 63
//based on Blake2b mixRound
internal inline fun mixRound(input: Array<UByte>): Array<ULong> {
var v = input.chunked(8).map { it.fromLittleEndianArrayToULong() }.toTypedArray()
v = mix(v, 0, 4, 8, 12)
v = mix(v, 1, 5, 9, 13)
v = mix(v, 2, 6, 10, 14)
v = mix(v, 3, 7, 11, 15)
v = mix(v, 0, 5, 10, 15)
v = mix(v, 1, 6, 11, 12)
v = mix(v, 2, 7, 8, 13)
v = mix(v, 3, 4, 9, 14)
return v
}
//Based on Blake2b mix
private inline fun mix(v: Array<ULong>, a: Int, b: Int, c: Int, d: Int): Array<ULong> {
v[a] = (v[a] + v[b] + 2U * (v[a] and 0xFFFFFFFFUL) * (v[b] and 0xFFFFFFFFUL))
v[d] = (v[d] xor v[a]) rotateRight R1
v[c] = (v[c] + v[d] + 2U * (v[c] and 0xFFFFFFFFUL) * (v[d] and 0xFFFFFFFFUL))
v[b] = (v[b] xor v[c]) rotateRight R2
v[a] = (v[a] + v[b] + 2U * (v[a] and 0xFFFFFFFFUL) * (v[b] and 0xFFFFFFFFUL))
v[d] = (v[d] xor v[a]) rotateRight R3
v[c] = (v[c] + v[d] + 2U * (v[c] and 0xFFFFFFFFUL) * (v[d] and 0xFFFFFFFFUL))
v[b] = (v[b] xor v[c]) rotateRight R4
return v
}
private fun extractColumnFromGBlock(gBlock: Array<UByte>, columnPosition: Int): Array<UByte> {
val result = Array<UByte>(128) { 0U }
for (i in 0..7) {
gBlock.copyOfRange(i * 128 + (columnPosition * 16), i * 128 + (columnPosition * 16) + 16)
.copyInto(result, i * 16)
}
return result
}
private fun copyIntoGBlockColumn(gBlock: Array<UByte>, columnPosition: Int, columnData: Array<UByte>) {
for (i in 0..7) {
val column = columnData.copyOfRange(i * 16, i * 16 + 16)
column.copyInto(gBlock, i * 128 + columnPosition * 16)
}
}
fun compressionFunctionG(
previousBlock: Array<UByte>,
referenceBlock: Array<UByte>,
currentBlock: Array<UByte>,
xorWithCurrentBlock: Boolean
): Array<UByte> {
val r = referenceBlock xor previousBlock
val q = Array<UByte>(1024) { 0U }
val z = Array<UByte>(1024) { 0U }
// Do the argon/blake2b mixing on rows
for (i in 0..7) {
val startOfRow = (i * 8 * 16)
val endOfRow = startOfRow + (8 * 16)
val rowToMix = r.copyOfRange(startOfRow, endOfRow)
mixRound(rowToMix)
.map { it.toLittleEndianUByteArray() }
.flatMap { it.asIterable() }
.toTypedArray()
.copyInto(q, startOfRow)
}
// Do the argon/blake2b mixing on columns
for (i in 0..7) {
copyIntoGBlockColumn(
z,
i,
mixRound(extractColumnFromGBlock(q, i))
.map { it.toLittleEndianUByteArray() }
.flatMap { it.asIterable() }
.toTypedArray()
)
}
val final = if (xorWithCurrentBlock) {
(z xor r) xor currentBlock
} else {
z xor r
}
return final
}
fun argonBlake2bArbitraryLenghtHash(input: Array<UByte>, length: UInt): Array<UByte> {
if (length <= 64U) {
return Blake2b.digest(inputMessage = length + input, hashLength = length.toInt())
}
//We can cast to int because UInt even if MAX_VALUE divided by 32 is guaranteed not to overflow
val numberOf64ByteBlocks = (1U + ((length - 1U) / 32U) - 2U).toInt() // equivalent to ceil(length/32) - 2
val v = Array<Array<UByte>>(numberOf64ByteBlocks) { emptyArray() }
v[0] = Blake2b.digest(length + input)
for (i in 1 until numberOf64ByteBlocks) {
v[i] = Blake2b.digest(v[i - 1])
}
val remainingPartOfInput = length.toInt() - numberOf64ByteBlocks * 32
val vLast = Blake2b.digest(v[numberOf64ByteBlocks - 1], hashLength = remainingPartOfInput)
val concat =
(v.map { it.copyOfRange(0, 32) })
.plus(listOf(vLast))
.foldRight(emptyArray<UByte>()) { arrayOfUBytes, acc -> arrayOfUBytes + acc }
return concat
}
}

View File

@ -18,9 +18,13 @@
package com.ionspin.kotlin.crypto.hash.keyderivation
import com.ionspin.kotlin.crypto.keyderivation.Argon2
import com.ionspin.kotlin.crypto.keyderivation.Argon2Template
import com.ionspin.kotlin.crypto.keyderivation.argon2.Argon2
import com.ionspin.kotlin.crypto.keyderivation.argon2.ArgonType
import com.ionspin.kotlin.crypto.util.hexColumsPrint
import kotlin.math.exp
import kotlin.test.Test
import kotlin.test.assertTrue
/**
* Created by Ugljesa Jovanovic
@ -46,7 +50,7 @@ class Argon2Test {
val secret: Array<UByte> = arrayOf(0x03U, 0x03U, 0x03U, 0x03U, 0x03U, 0x03U, 0x03U, 0x03U)
val associatedData: Array<UByte> = arrayOf(0x04U, 0x04U, 0x04U, 0x04U, 0x04U, 0x04U, 0x04U, 0x04U, 0x04U, 0x04U, 0x04U, 0x04U)
val digest = Argon2(
val digest = Argon2Template(
password,
salt,
parallelism,
@ -56,10 +60,92 @@ class Argon2Test {
0x13U,
secret,
associatedData,
type = Argon2.ArgonType.Argon2d
type = Argon2Template.ArgonType.Argon2d
)
val result = digest.calculate()
result.hexColumsPrint(8)
}
@Test
fun argon2dKATTest() {
val expected : Array<UByte> = arrayOf(
0x51U, 0x2BU, 0x39U, 0x1BU, 0x6FU, 0x11U, 0x62U, 0x97U,
0x53U, 0x71U, 0xD3U, 0x09U, 0x19U, 0x73U, 0x42U, 0x94U,
0xF8U, 0x68U, 0xE3U, 0xBEU, 0x39U, 0x84U, 0xF3U, 0xC1U,
0xA1U, 0x3AU, 0x4DU, 0xB9U, 0xFAU, 0xBEU, 0x4AU, 0xCBU
)
val memory = 32U //KiB
val iterations = 3U
val parallelism = 4U
val tagLength = 32U
val password: Array<UByte> = arrayOf(
0x01U, 0x01U, 0x01U, 0x01U, 0x01U, 0x01U, 0x01U, 0x01U,
0x01U, 0x01U, 0x01U, 0x01U, 0x01U, 0x01U, 0x01U, 0x01U,
0x01U, 0x01U, 0x01U, 0x01U, 0x01U, 0x01U, 0x01U, 0x01U,
0x01U, 0x01U, 0x01U, 0x01U, 0x01U, 0x01U, 0x01U, 0x01U
)
val salt: Array<UByte> = arrayOf(0x02U, 0x02U, 0x02U, 0x02U, 0x02U, 0x02U, 0x02U, 0x02U, 0x02U, 0x02U, 0x02U, 0x02U, 0x02U, 0x02U, 0x02U, 0x02U)
val secret: Array<UByte> = arrayOf(0x03U, 0x03U, 0x03U, 0x03U, 0x03U, 0x03U, 0x03U, 0x03U)
val associatedData: Array<UByte> = arrayOf(0x04U, 0x04U, 0x04U, 0x04U, 0x04U, 0x04U, 0x04U, 0x04U, 0x04U, 0x04U, 0x04U, 0x04U)
val digest = Argon2(
password,
salt,
parallelism.toInt(),
tagLength,
memory,
iterations,
secret,
associatedData,
ArgonType.Argon2d
)
val result = digest.derive()
result.hexColumsPrint(8)
assertTrue { expected.contentEquals(result) }
}
@Test
fun argon2iKATTest() {
val expected : Array<UByte> = arrayOf(
0xc8U, 0x14U, 0xd9U, 0xd1U, 0xdcU, 0x7fU, 0x37U, 0xaaU,
0x13U, 0xf0U, 0xd7U, 0x7fU, 0x24U, 0x94U, 0xbdU, 0xa1U,
0xc8U, 0xdeU, 0x6bU, 0x01U, 0x6dU, 0xd3U, 0x88U, 0xd2U,
0x99U, 0x52U, 0xa4U, 0xc4U, 0x67U, 0x2bU, 0x6cU, 0xe8U
)
val memory = 32U //KiB
val iterations = 3U
val parallelism = 4U
val tagLength = 32U
val password: Array<UByte> = arrayOf(
0x01U, 0x01U, 0x01U, 0x01U, 0x01U, 0x01U, 0x01U, 0x01U,
0x01U, 0x01U, 0x01U, 0x01U, 0x01U, 0x01U, 0x01U, 0x01U,
0x01U, 0x01U, 0x01U, 0x01U, 0x01U, 0x01U, 0x01U, 0x01U,
0x01U, 0x01U, 0x01U, 0x01U, 0x01U, 0x01U, 0x01U, 0x01U
)
val salt: Array<UByte> = arrayOf(0x02U, 0x02U, 0x02U, 0x02U, 0x02U, 0x02U, 0x02U, 0x02U, 0x02U, 0x02U, 0x02U, 0x02U, 0x02U, 0x02U, 0x02U, 0x02U)
val secret: Array<UByte> = arrayOf(0x03U, 0x03U, 0x03U, 0x03U, 0x03U, 0x03U, 0x03U, 0x03U)
val associatedData: Array<UByte> = arrayOf(0x04U, 0x04U, 0x04U, 0x04U, 0x04U, 0x04U, 0x04U, 0x04U, 0x04U, 0x04U, 0x04U, 0x04U)
val digest = Argon2(
password,
salt,
parallelism.toInt(),
tagLength,
memory,
iterations,
secret,
associatedData,
ArgonType.Argon2i
)
val result = digest.derive()
result.hexColumsPrint(8)
assertTrue { expected.contentEquals(result) }
}
}