0.7.4-SNAPSHOT back to no wasm; public/secret key renamed with compatibility aliases and deprecation warnings

This commit is contained in:
Sergey Chernov 2025-02-24 09:22:08 +03:00
parent d180da309b
commit e2d4fb07ad
16 changed files with 113 additions and 108 deletions

View File

@ -9,7 +9,6 @@
*/
import org.jetbrains.kotlin.gradle.ExperimentalKotlinGradlePluginApi
import org.jetbrains.kotlin.gradle.ExperimentalWasmDsl
import org.jetbrains.kotlin.gradle.dsl.JvmTarget
plugins {
@ -20,13 +19,13 @@ plugins {
}
group = "net.sergeych"
version = "0.8.1"
version = "0.7.4-SNAPSHOT"
repositories {
mavenCentral()
maven("https://maven.universablockchain.com/")
maven("https://gitea.sergeych.net/api/packages/SergeychWorks/maven")
maven("https://gitea.sergeych.net/api/packages/YoungBlood/maven")
// maven("https://gitea.sergeych.net/api/packages/YoungBlood/maven")
mavenLocal()
}
@ -50,10 +49,10 @@ kotlin {
iosArm64()
iosSimulatorArm64()
mingwX64()
@OptIn(ExperimentalWasmDsl::class)
wasmJs {
browser()
}
// @OptIn(ExperimentalWasmDsl::class)
// wasmJs {
// browser()
// }
val ktor_version = "2.3.6"
sourceSets {
@ -97,18 +96,18 @@ kotlin {
for (platform in listOf(linuxX64Main, linuxArm64Main, macosX64Main, macosArm64Main, iosX64Main, iosArm64Main, iosSimulatorArm64Main, mingwX64Main))
platform { dependsOn(native) }
val wasmJsMain by getting {
val wasmJsTargetRegex = Regex(pattern = "wasmJs.*")
configurations.all {
if (wasmJsTargetRegex.containsMatchIn(input = this.name)) {
resolutionStrategy.dependencySubstitution {
substitute(module("com.ionspin.kotlin:multiplatform-crypto-libsodium-bindings:0.9.2"))
.using(module("net.sergeych:multiplatform-crypto-libsodium-bindings:0.9.4-SNAPSHOT"))
.withoutClassifier()
}
}
}
}
// val wasmJsMain by getting {
// val wasmJsTargetRegex = Regex(pattern = "wasmJs.*")
// configurations.all {
// if (wasmJsTargetRegex.containsMatchIn(input = this.name)) {
// resolutionStrategy.dependencySubstitution {
// substitute(module("com.ionspin.kotlin:multiplatform-crypto-libsodium-bindings:0.9.2"))
// .using(module("net.sergeych:multiplatform-crypto-libsodium-bindings:0.9.4-SNAPSHOT"))
// .withoutClassifier()
// }
// }
// }
// }
}
}

View File

@ -24,10 +24,10 @@ import net.sergeych.crypto2.Asymmetric.generateKeys
*
* ## How to
*
* - [SecretKey.new] to create a secret key that includes [SecretKey.publicKey].
* - [DecryptingSecretKey.new] to create a secret key that includes [DecryptingSecretKey.publicKey].
* [generateKeys] also makes the pair.
* - [PublicKey] provides encryption, anonymous or authenticated.
* - [SecretKey] provides authenticated decryption of what [PublicKey] was encrypted with.
* - [EncryptingPublicKey] provides encryption, anonymous or authenticated.
* - [DecryptingSecretKey] provides authenticated decryption of what [EncryptingPublicKey] was encrypted with.
* - [Message] is a serializable container with all necessary data to decrypt public-key encrypted data it.
*
* __Algorithms:__
@ -41,8 +41,8 @@ object Asymmetric {
/**
* Encrypted message holder.
*
* Do not instantiate it directly, use [PublicKey.encryptMessage], [PublicKey.encryptAnonymousMessage], etc.
* instead. Also [SecretKey.decrypt] can be used to decrypt it same as [decrypt] or [decryptWithSenderKey].
* Do not instantiate it directly, use [EncryptingPublicKey.encryptMessage], [EncryptingPublicKey.encryptAnonymousMessage], etc.
* instead. Also [DecryptingSecretKey.decrypt] can be used to decrypt it same as [decrypt] or [decryptWithSenderKey].
*
* To successfully decrypt the message, it is necessary to know a sender public key, and non-secret nonce.
* This class carries all this information; serialize and pass it to the recipient.
@ -51,12 +51,12 @@ object Asymmetric {
class Message(
private val nonce: UByteArray,
private val encryptedMessage: UByteArray,
val senderPublicKey: PublicKey,
val senderPublicKey: EncryptingPublicKey,
) {
/**
* Decrypt the message, same as [SecretKey.decrypt]
* Decrypt the message, same as [DecryptingSecretKey.decrypt]
*/
fun decrypt(recipientKey: SecretKey): UByteArray {
fun decrypt(recipientKey: DecryptingSecretKey): UByteArray {
return decryptWithSenderKey(senderPublicKey, recipientKey)
}
@ -64,7 +64,7 @@ object Asymmetric {
* Decrypt a message which is not include sender's public key (which should somehow be
* known to the recipient). Use it if [senderPublicKey] is null.
*/
fun decryptWithSenderKey(senderKey: PublicKey, recipientKey: SecretKey): UByteArray {
fun decryptWithSenderKey(senderKey: EncryptingPublicKey, recipientKey: DecryptingSecretKey): UByteArray {
return try {
WithFill.decode(
Box.openEasy(encryptedMessage, nonce, senderKey.keyBytes, recipientKey.keyBytes)
@ -89,19 +89,19 @@ object Asymmetric {
/**
* Encrypt the [plainData] using [from] sender for [recipient] public key. Note that to decrypt it
* the [SecretKey] that corresponds to the [recipient] public key is needed, Sender can't decrypt the message!
* the [DecryptingSecretKey] that corresponds to the [recipient] public key is needed, Sender can't decrypt the message!
*
* The authenticated encryption is used, is the message _is successfully decrypted_, it also means that
* it was signed by the sender, whose public key is known at the decryption time.
*
* When it is important not to provide senders' key, use [PublicKey.encryptAnonymousMessage].
* When it is important not to provide senders' key, use [EncryptingPublicKey.encryptAnonymousMessage].
*
* @param from the senders' secret key.
* @param recipient the recipients' public key.
* @param plainData data to encrypt
*/
internal fun createMessage(
from: SecretKey, recipient: PublicKey, plainData: UByteArray,
from: DecryptingSecretKey, recipient: EncryptingPublicKey, plainData: UByteArray,
nonce: UByteArray = randomNonce(),
): Message {
return Message(
@ -114,8 +114,8 @@ object Asymmetric {
private fun randomNonce(): UByteArray = randomUBytes(crypto_box_NONCEBYTES)
fun generateKeys() = SecretKey.generateKeys()
fun newSecretKey() = SecretKey.new()
fun generateKeys() = DecryptingSecretKey.generateKeys()
fun newSecretKey() = DecryptingSecretKey.new()
val nonceBytesLength = crypto_box_NONCEBYTES
@ -125,4 +125,4 @@ object Asymmetric {
* Shortcut type: a pair of sender secret key and recipient private key could be used so
* simplify such interfaces
*/
typealias AsymmetricEncryptionPair = Pair<SecretKey?, PublicKey>
typealias AsymmetricEncryptionPair = Pair<DecryptingSecretKey?, EncryptingPublicKey>

View File

@ -58,7 +58,7 @@ open class BinaryId(
/**
* Bad format (crc does not match)
*/
class InvalidException(text: String,reason: Throwable?=null) : IllegalArgumentException(text,reason)
class InvalidException(text: String, reason: Throwable? = null) : IllegalArgumentException(text, reason)
/**
* Attempt to compare binary ids with different magic. In this case only [equals]
@ -80,32 +80,32 @@ open class BinaryId(
rest.last().toInt()
}
private val innerData: UByteArray by lazy { id.sliceArray( 1..< id.size-1 ) }
private val innerData: UByteArray by lazy { id.sliceArray(1..<id.size - 1) }
/**
* The ID body: all the bytes except check and magic. ID bytes could carry useful information.
*
* - `id.size` is [body] size + 2 (see [BinaryId] inner structure)
*/
val body: UByteArray by lazy { id.sliceArray( 0 until id.size-2 ) }
val body: UByteArray by lazy { id.sliceArray(0 until id.size - 2) }
val asVerifyingKey: VerifyingKey by lazy {
if( magic != KeysmagicNumber.defaultVerifying.ordinal)
if (magic != KeysmagicNumber.defaultVerifying.ordinal)
throw InvalidException("It is not a veryfing key: magic=$magic, required ${KeysmagicNumber.defaultVerifying.ordinal}")
check(body.size == 32)
VerifyingPublicKey(body)
}
/**
* Try to recnstruct a [PublicKey] from [id] bytes. For such keys, [PublicKey.id] and [SecretKey.id]
* Try to recnstruct a [EncryptingPublicKey] from [id] bytes. For such keys, [EncryptingPublicKey.id] and [DecryptingSecretKey.id]
* are made from public key bytes so it could be restored from such an ID
*
*/
val asPublicKey: PublicKey by lazy {
if( magic != KeysmagicNumber.defaultAssymmetric.ordinal)
val asPublicKey: EncryptingPublicKey by lazy {
if (magic != KeysmagicNumber.defaultAssymmetric.ordinal)
throw InvalidException("It is not a veryfing key: magic=$magic, required ${KeysmagicNumber.defaultAssymmetric.ordinal}")
check(body.size == 32)
PublicKey(body)
EncryptingPublicKey(body)
}
override fun toString(): String = id.encodeToBase64Url()
@ -167,8 +167,8 @@ open class BinaryId(
}
@Suppress("unused")
fun createRandom(magicNumber: Int, size: Int=16) =
createFromBytes(magicNumber, Random.Default.nextBytes(size-2))
fun createRandom(magicNumber: Int, size: Int = 16) =
createFromBytes(magicNumber, Random.Default.nextBytes(size - 2))
/**
* Encode a string as UTF and create a binaryId from its bytes and provided magic.

View File

@ -34,8 +34,8 @@ import net.sergeych.crypto2.Container.Companion.createWith
*
* Some rules:
*
* When adding public key recipient, it is faster to use your known [SecretKey], but you
* can stay anonymous by just adding [PublicKey] only.
* When adding public key recipient, it is faster to use your known [DecryptingSecretKey], but you
* can stay anonymous by just adding [EncryptingPublicKey] only.
*
* Put your data in [SealedBox] if you need to authenticate message origin and timestamp, then put
* the sealed box in the [Container], this will conceal signers from attack. In the case you need to
@ -117,7 +117,7 @@ sealed class Container {
* Add e key to the __decrypted__ container. The new container is also decrypted so you can add
* more keys, etc.
*/
operator fun plus(recipient: PublicKey) = addRecipients { key(recipient) }
operator fun plus(recipient: EncryptingPublicKey) = addRecipients { key(recipient) }
/**
* Add e key to the __decrypted__ container. The new container is also decrypted so you can add
@ -129,7 +129,7 @@ sealed class Container {
* Add e key to the __decrypted__ container. The new container is also decrypted so you can add
* more keys, etc.
*/
operator fun plus(pair: Pair<SecretKey, PublicKey>) = addRecipients { key(pair) }
operator fun plus(pair: Pair<DecryptingSecretKey, EncryptingPublicKey>) = addRecipients { key(pair) }
/**
* Update the data in the decrypted container. It keeps the same set of keys and update
@ -155,14 +155,14 @@ sealed class Container {
abstract val decryptedWithKeyId: KeyId?
/**
* If the container _is decrypted by the [PublicKey]_, e.g., using secret key encryption,
* contains the [PublicKey] that corresponds the [SecretKey] used while encrypting, this
* If the container _is decrypted by the [EncryptingPublicKey]_, e.g., using secret key encryption,
* contains the [EncryptingPublicKey] that corresponds the [DecryptingSecretKey] used while encrypting, this
* authenticating the sender party cryptographically. This key could be used to encrypt
* the response to be visible to the sender only; the sender, providing it kept his secret key,
* could decrypt it.
*/
@Transient
var authorisedByKey: PublicKey? = null
var authorisedByKey: EncryptingPublicKey? = null
protected set
/**
@ -203,7 +203,7 @@ sealed class Container {
kotlin.runCatching { k.decrypt(encryptedMessage) }.getOrNull()?.let {
decryptedData = it
decryptedWithKey = k
if( k is SecretKey) {
if(k is DecryptingSecretKey) {
authorisedByKey = Asymmetric.Message.decode(encryptedMessage).senderPublicKey
}
return it
@ -226,7 +226,7 @@ sealed class Container {
// otherwise, we don't know the encryption key and will try to derive it
// from the decryption key:
when (val k = decryptedWithKey!!) {
is SecretKey -> {
is DecryptingSecretKey -> {
key(k.publicKey)
}
@ -269,12 +269,12 @@ sealed class Container {
constructor(key: EncryptingKey, encodeMainKey: UByteArray) :
this(key.id, key.encrypt(encodeMainKey))
constructor(sender: SecretKey?, recipient: PublicKey, encodeMainKey: UByteArray) :
constructor(sender: DecryptingSecretKey?, recipient: EncryptingPublicKey, encodeMainKey: UByteArray) :
this(
recipient.id,
recipient.encryptMessage(
encodeMainKey,
senderKey = sender ?: SecretKey.new(),
senderKey = sender ?: DecryptingSecretKey.new(),
).encoded
)
}
@ -304,7 +304,7 @@ sealed class Container {
throw InvalidContainerException()
decryptedWithKeyId = key.id
mainKey = k
if( key is SecretKey) {
if(key is DecryptingSecretKey) {
authorisedByKey = Asymmetric.Message.decode(encryptedKey.cipherData).senderPublicKey
}
}
@ -368,8 +368,8 @@ sealed class Container {
}
/**
* Add one or more [SecretKey] as sender authority coupled with [PublicKey] as
* a recipient. This is faster than anonymous usage of [PublicKey] only
* Add one or more [DecryptingSecretKey] as sender authority coupled with [EncryptingPublicKey] as
* a recipient. This is faster than anonymous usage of [EncryptingPublicKey] only
*/
fun key(vararg pairs: AsymmetricEncryptionPair) {
keyPairs.addAll(pairs)
@ -378,7 +378,7 @@ sealed class Container {
/**
* Add one or more public keys as recipients. This is slower than using pairs of sender -> recipient.
*/
fun key(vararg publicKeys: PublicKey) {
fun key(vararg publicKeys: EncryptingPublicKey) {
keyPairs.addAll(publicKeys.map { null to it })
}
@ -439,7 +439,7 @@ sealed class Container {
Single(
pk.id, pk.encryptMessage(
plainData,
senderKey = sk ?: SecretKey.new(),
senderKey = sk ?: DecryptingSecretKey.new(),
randomFill = fillRange
).encoded,
plainData,

View File

@ -18,7 +18,7 @@ import net.sergeych.crypto2.SymmetricKey.WithNonce
/**
* Some key able to perform decrypting. It is not serializable by purpose, as not all such
* keys are wise to transfer/save. Concrete implementations are, like [SymmetricKey] or
* [SecretKey].
* [DecryptingSecretKey].
*/
interface DecryptingKey : NonceBased, KeyInstance {
/**

View File

@ -20,7 +20,7 @@ import kotlinx.serialization.Serializable
* Important. `KeyId` of matching keys are the same, so you can use it to identify
* and find matching keys in the [UniversalRing], etc. For example:
*
* - [SecretKey] and [PublicKey] from the same pair have the same `KeyId`, thus the former
* - [DecryptingSecretKey] and [EncryptingPublicKey] from the same pair have the same `KeyId`, thus the former
* can decrypt what was encrypted with the latter.
*
* - [SigningSecretKey] and corresponding [VerifyingKey] have the same `KeyId`. Use it to pick a proper key for
@ -28,7 +28,7 @@ import kotlinx.serialization.Serializable
*
* See [PBKD.Params.deriveKey] for deriving keys from id.
*
* See [id], and [BinaryId] class for more. Note that for [PublicKey] and [VerifyingPublicKey] [BinaryId.asPublicKey]
* See [id], and [BinaryId] class for more. Note that for [EncryptingPublicKey] and [VerifyingPublicKey] [BinaryId.asPublicKey]
* and [BinaryId.asVerifyingKey] restore actual keys, providing [BinaryId.magic] has proper value, see [KeysmagicNumber]]
*
* @param id actual id used in equality test amd hash code generation. `Id` of the matching keys is the same.

View File

@ -17,20 +17,22 @@ import net.sergeych.bipack.decodeFromBipack
import net.sergeych.crypto2.VerifyingPublicKey.Companion.toString
import net.sergeych.mp_tools.decodeBase64Url
@Deprecated("Use EncryptingPublicKey",ReplaceWith("EncryptingPublicKey"))
typealias PublicKey = EncryptingPublicKey
/**
* The public for public-key encryption. It encrypts messages that can only be decrypted with corresponding
* [SecretKey].
* [DecryptingSecretKey].
*/
@Serializable
@SerialName("encp")
class PublicKey(override val keyBytes: UByteArray) : UniversalKey(), EncryptingKey {
class EncryptingPublicKey(override val keyBytes: UByteArray) : UniversalKey(), EncryptingKey {
override val magic: KeysmagicNumber = KeysmagicNumber.defaultAssymmetric
@Transient
override val label: String = "pub"
/**
* Create an anonymous message that could be decrypted only with the [SecretKey] that corresponds this.
* Create an anonymous message that could be decrypted only with the [DecryptingSecretKey] that corresponds this.
* Anonymous message uses one-time secret key, the public part of which is included into the
* [Asymmetric.Message], so the sender could not be identified.
*
@ -67,18 +69,18 @@ class PublicKey(override val keyBytes: UByteArray) : UniversalKey(), EncryptingK
fun encryptMessage(
plainData: UByteArray,
nonce: UByteArray = randomNonce(),
senderKey: SecretKey = newSecretKey(),
senderKey: DecryptingSecretKey = newSecretKey(),
randomFill: IntRange? = null,
) = Asymmetric.createMessage(senderKey, this, WithFill.encode(plainData, randomFill), nonce)
/**
* Encrypt message using the specified secret key as sender authentication. Recipient, the party having
* [SecretKey] corresponding to this one, will be able to decrypt the message and be sure that [senderKey]
* [DecryptingSecretKey] corresponding to this one, will be able to decrypt the message and be sure that [senderKey]
* was the author and the message was not altered.
*/
fun encryptMessage(
plainData: UByteArray,
senderKey: SecretKey,
senderKey: DecryptingSecretKey,
randomFill: IntRange? = null,
): Asymmetric.Message =
Asymmetric.createMessage(senderKey, this, WithFill.encode(plainData, randomFill))
@ -91,12 +93,12 @@ class PublicKey(override val keyBytes: UByteArray) : UniversalKey(), EncryptingK
* possible)
* @throws IllegalArgumentException the public key isn't recognized
*/
fun parse(text: String): PublicKey {
fun parse(text: String): EncryptingPublicKey {
val s = text.trim()
fun parseId(t: String): PublicKey{
fun parseId(t: String): EncryptingPublicKey {
val id = BinaryId.restoreFromString(t)
if( id.magic != KeysmagicNumber.defaultAssymmetric.ordinal)
if (id.magic != KeysmagicNumber.defaultAssymmetric.ordinal)
throw IllegalArgumentException("invalid magick ${id.magic} for PublicKey")
return id.asPublicKey
}
@ -110,10 +112,10 @@ class PublicKey(override val keyBytes: UByteArray) : UniversalKey(), EncryptingK
// consider it is serialized key in base64 format
val data = s.decodeBase64Url().asUByteArray()
if (data.size == 32)
PublicKey(data)
EncryptingPublicKey(data)
else {
runCatching { data.decodeFromBipack<PublicKey>() }.getOrNull()
?: kotlin.runCatching { data.decodeFromBipack<UniversalKey>() as PublicKey }
runCatching { data.decodeFromBipack<EncryptingPublicKey>() }.getOrNull()
?: kotlin.runCatching { data.decodeFromBipack<UniversalKey>() as EncryptingPublicKey }
.getOrElse { throw IllegalArgumentException("can't parse verifying key") }
}
}

View File

@ -20,7 +20,7 @@ import net.sergeych.crypto2.SafeKeyExchange.SessionKey
* Usage:
*
* 1. Create [SafeKeyExchange] on both server and client sides
* 2. Exchange [publicKey] instances
* 2. Exchange [EncryptingPublicKey] instances
* 3. Create [serverSessionKey] and [clientSessionKey] respectively
* 4. Use [SessionKey.sendingKey] and [SessionKey.receivingKey] to send and receive encrypted data.
*
@ -30,7 +30,7 @@ import net.sergeych.crypto2.SafeKeyExchange.SessionKey
* instances as often as performance considerations allow.
* - while it is possible to generate several keys "ahead", the care should be taken when storing them,
* encrypt it with some other key to maintain safety.
* - do not use [publicKey] for anything but creating session keys.
* - do not use [EncryptingPublicKey] for anything but creating session keys.
*/
class SafeKeyExchange {
private val pair = KeyExchange.keypair()

View File

@ -109,7 +109,7 @@ class Seal(
* to check the authenticity of the arbitrary [message] using a public key, [VerifyingPublicKey]
* instance, using public-key signing algorithms.
*
* Unlike a regular binary signature, Seal contains the signer's [publicKey], and also
* Unlike a regular binary signature, Seal contains the signer's [EncryptingPublicKey], and also
* [createdAt] and [expiresAt] fields which are also signed and are guaranteed to be non-tampered
* if the [isValid] returns true (or [verify] does not throw). See [isExpired].
*

View File

@ -16,24 +16,28 @@ import kotlinx.serialization.SerialName
import kotlinx.serialization.Serializable
import kotlinx.serialization.Transient
@Deprecated("Use DecryptingSecretKey instead",ReplaceWith("DecryptingSecretKey"))
typealias SecretKey = DecryptingSecretKey
/**
* The secret key used in public-key encryption; it is used to _decrypt_ data encrypted with its
* public counterpart, see [publicKey].
* public counterpart, see [EncryptingPublicKey].
*/
@Serializable
@SerialName("encs")
class SecretKey(
class DecryptingSecretKey(
override val keyBytes: UByteArray,
@Transient
val _cachedPublicKey: PublicKey? = null,
val _cachedPublicKey: EncryptingPublicKey? = null,
) : DecryptingKey, UniversalKey() {
@Transient
override val label: String = "sec"
/**
* Decrypt with authentication checks the message which must have [Asymmetric.Message.senderPublicKey] set.
* Use [decryptWithSenderKey] otherwise. Note that the authenticated encryption is always use, even if
* the [PublicKey.encryptAnonymousMessage] was used to create a message, if it is successfully decrypted,
* the [EncryptingPublicKey.encryptAnonymousMessage] was used to create a message, if it is successfully decrypted,
* it is guaranteed that the message was not altered after creation.
*
* @throws DecryptionFailedException If the message is tampered (changed after creation) or was not intended for us,
@ -45,20 +49,20 @@ class SecretKey(
* Decrypt using [senderPublicKey] as a sender key (overriding the [Asymmetric.Message.senderPublicKey] if set).
* See [decrypt] for more.
*/
fun decryptWithSenderKey(message: Asymmetric.Message, senderPublicKey: PublicKey): UByteArray =
fun decryptWithSenderKey(message: Asymmetric.Message, senderPublicKey: EncryptingPublicKey): UByteArray =
message.decryptWithSenderKey(senderPublicKey, this)
@Transient
private var cachedPublicKey: PublicKey? = _cachedPublicKey
private var cachedPublicKey: EncryptingPublicKey? = _cachedPublicKey
/**
* The corresponding public key
*/
val publicKey: PublicKey by lazy {
val publicKey: EncryptingPublicKey by lazy {
if (cachedPublicKey != null)
cachedPublicKey!!
else
PublicKey(ScalarMultiplication.scalarMultiplicationBase(keyBytes))
EncryptingPublicKey(ScalarMultiplication.scalarMultiplicationBase(keyBytes))
.also { cachedPublicKey = it }
}
@ -81,18 +85,18 @@ class SecretKey(
get() = 0
companion object {
data class KeyPair(val secretKey: SecretKey, val publicKey: PublicKey)
data class KeyPair(val secretKey: DecryptingSecretKey, val publicKey: EncryptingPublicKey)
/**
* Generate a new random pair of public and secret keys.
*/
fun generateKeys(): KeyPair {
val p = Box.keypair()
val pk = PublicKey(p.publicKey)
return KeyPair(SecretKey(p.secretKey, pk), pk)
val pk = EncryptingPublicKey(p.publicKey)
return KeyPair(DecryptingSecretKey(p.secretKey, pk), pk)
}
fun new(): SecretKey = generateKeys().secretKey
fun new(): DecryptingSecretKey = generateKeys().secretKey
}
}

View File

@ -27,7 +27,7 @@ sealed class UniversalKey : KeyInstance {
/**
* Key ID positively identify key from the point of view of _decrypting or verifying_. So matching [VerifyingKey]
* and [SigningKey] will have the same id, same as matching [PublicKey] and [SecretKey].
* and [SigningKey] will have the same id, same as matching [EncryptingPublicKey] and [DecryptingSecretKey].
*
* KeyId is based on [BinaryId] which includes checksum (crc8) and magick number for additional security,
* see [KeysmagicNumber].
@ -53,7 +53,7 @@ sealed class UniversalKey : KeyInstance {
}
companion object {
fun newSecretKey() = SecretKey.new()
fun newSecretKey() = DecryptingSecretKey.new()
fun newSigningKey() = SigningSecretKey.new()
@Suppress("unused")
@ -67,7 +67,7 @@ sealed class UniversalKey : KeyInstance {
val s = text.trim()
return when {
s.startsWith("\uD83D\uDDDDpub#") || s.startsWith("pub#") ->
PublicKey.parse(s)
EncryptingPublicKey.parse(s)
s.startsWith("\uD83D\uDDDDver#") || s.startsWith("ver#") ->
VerifyingPublicKey.parse(s)
else -> {

View File

@ -24,7 +24,7 @@ import kotlinx.serialization.Transient
@SerialName("uprv")
class UniversalPrivateKey(
val signingKey: SigningSecretKey,
val decryptingKey: SecretKey
val decryptingKey: DecryptingSecretKey
) : UniversalKey(), DecryptingKey by decryptingKey, SigningKey by signingKey {
override val keyBytes by lazy { signingKey.keyBytes + decryptingKey.keyBytes }
@ -52,6 +52,6 @@ class UniversalPrivateKey(
* Generate 2 new random keys (4 key pairs under the hood) to securely signd and
* decrypt data.
*/
fun new() = UniversalPrivateKey(SigningSecretKey.new(), SecretKey.new())
fun new() = UniversalPrivateKey(SigningSecretKey.new(), DecryptingSecretKey.new())
}
}

View File

@ -25,7 +25,7 @@ import kotlinx.serialization.Transient
@SerialName("upub")
class UniversalPublicKey(
val verifyingKey: VerifyingPublicKey,
val encryptingKey: PublicKey
val encryptingKey: EncryptingPublicKey
): UniversalKey(), VerifyingKey by verifyingKey, EncryptingKey by encryptingKey{
override val keyBytes by lazy { verifyingKey.keyBytes + encryptingKey.keyBytes }

View File

@ -48,7 +48,7 @@ class UniversalRing(
/**
* Find a key of the specified type that matches the id. In general, you require key implementations like
* [SecretKey], [PublicKey], [VerifyingPublicKey], [SigningSecretKey] and [SymmetricKey],
* [DecryptingSecretKey], [EncryptingPublicKey], [VerifyingPublicKey], [SigningSecretKey] and [SymmetricKey],
* or just key interfaces: [EncryptingKey], [DecryptingKey], [SigningKey] and [VerifyingKey].
*
* Note that key interfaces are not serializable as for now, you should try to cast to a serializable

View File

@ -187,7 +187,7 @@ class KeysTest {
// println(sk0.publicKey)
val j = Json { prettyPrint = true }
val sk1 = j.decodeFromString<SecretKey>(j.encodeToString(sk0))
val sk1 = j.decodeFromString<DecryptingSecretKey>(j.encodeToString(sk0))
assertEquals(sk0, sk1)
assertEquals(pk0, sk1.publicKey)
// println(j.encodeToString(sk1))
@ -216,9 +216,9 @@ class KeysTest {
assertEquals(usy2, usy1)
assertFalse { usy1 == usy3 }
val sk1 = SecretKey.new()
val sk2 = SecretKey(sk1.keyBytes)
val sk3 = SecretKey.new()
val sk1 = DecryptingSecretKey.new()
val sk2 = DecryptingSecretKey(sk1.keyBytes)
val sk3 = DecryptingSecretKey.new()
assertEquals(sk1, sk2)
assertEquals(sk2, sk1)
@ -418,13 +418,13 @@ class KeysTest {
@Test
fun testEncodedSizes2() = runTest {
initCrypto()
val x = SecretKey.new()
val x = DecryptingSecretKey.new()
// println("key bytes: ${x.keyBytes.size}:\n${x.keyBytes.toDump()}")
val y = BipackEncoder.encode(x)
// println("packed: ${y.size}: ${y.toDump()}")
assertTrue { x.keyBytes.size + 5 > y.size }
assertEquals(x, BipackDecoder.decode<SecretKey>(y))
assertContentEquals(x.keyBytes, BipackDecoder.decode<SecretKey>(y).keyBytes)
assertEquals(x, BipackDecoder.decode<DecryptingSecretKey>(y))
assertContentEquals(x.keyBytes, BipackDecoder.decode<DecryptingSecretKey>(y).keyBytes)
}
@Test
@ -432,7 +432,7 @@ class KeysTest {
initCrypto()
val k1 = SigningSecretKey.new()
val k2 = k1.verifyingKey
val k3 = SecretKey.new()
val k3 = DecryptingSecretKey.new()
val k4 = k3.publicKey
val k5 = UniversalPrivateKey.new()

View File

@ -27,7 +27,7 @@ class RingTest {
assertEquals(y1, y2)
val e1 = Asymmetric.newSecretKey()
val e2: SecretKey = BipackDecoder.decode(BipackEncoder.encode(e1))
val e2: DecryptingSecretKey = BipackDecoder.decode(BipackEncoder.encode(e1))
assertEquals(e1, e2)
val k1 = SymmetricKey("1234567890Hello,dolly.here-we-go".encodeToUByteArray()) as UniversalKey
@ -164,14 +164,14 @@ class RingTest {
var r1 = ra + rb + rc + rd
assertEquals(a, r1.findKey<SecretKey>(a.id))
assertEquals(a, r1.findKey<DecryptingSecretKey>(a.id))
assertEquals(a, r1.keyByTag<UniversalKey>("foo_a"))
assertEquals(b, r1.findKey<SigningKey>(b.id))
assertEquals(c, r1.findById(c.id).first())
r1 = UniversalRing.join(listOf(ra, rb, rc, rd))
assertEquals(a, r1.findKey<SecretKey>(a.id))
assertEquals(a, r1.findKey<DecryptingSecretKey>(a.id))
assertEquals(a, r1.keyByTag<UniversalKey>("foo_a"))
assertEquals(b, r1.findKey<SigningKey>(b.id))
assertEquals(c, r1.findById(c.id).first())